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1. Order structure of R

Throughout this section, a number L means that it is a real number and let S be a non-empty
subset of R.

Definition 1.1. Using the notation as above:

(i) S is said to be bounded above (resp. bounded below) if there is a number L (resp. ` such
that x ≤ L (resp. ` ≤ x ) for all x ∈ S. In this case, such number L (resp. `) is called an
upper bound (resp. lower bound) for S.
Furthermore, S is said to be bounded if it is both are bounded above and bounded below.

(ii) S is said to have a maximal element (resp. minimal element) if there is an element M ∈ S
(resp. m ∈ S such that x ≤M (resp. m ≤ x) for all x ∈ S. In this case, write maxS and
minS for the maximal element and the minimal element of S respectively.

Remark 1.2. (i) It is noted that the maximum of a set may not exist even it is bounded above.
For example, if let S = {1 − 1

n : n = 1, 2...}, then S is bounded above but maxS does not
exist.

(ii) It is clear that maxS exists if and only if min(S) exists, where −S = {−x : x ∈ S}. In this
case, we have −maxS = min(−S).

The following notion plays an important role in mathematics.

Definition 1.3. Using the notation as above, a number L ∈ R (rep. `) is called the supremum
(resp. the infimum ) of S if L is the least upper bound (resp. the greatest lower bound) for S. In
this case, we write

L := supS ; ` := inf S.

The following result is easy shown by the fact that a number L is an upper bound for S if and
only if −L is a lower bound for the set −S.

Proposition 1.4. Using the notation as above, then supS exists if and only if inf(−S) exists. In
this case, we have

− supS = inf(−S).

The following is a very useful result for checking a number whether it is the supremum of a given
set. In addition, the technique of the proof is standard.

Theorem 1.5. Assume that supS exists. A number L = supS if and only if it satisfies the
following two conditions.

(i) L is an upper bound for S.
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(ii) For any ε > 0, there is an element x0 ∈ S such that L− ε < x0.

Similarly, if inf S exists, then a number ` = inf S if and only if the following two conditions hold:

(i’) ` is a lower bound for S;
(ii’) For any ε > 0, there is an element y0 ∈ S such that y0 < `+ ε.

Proof. We are going to show the case of supremum first. For showing (⇒), assume that L = supS.
It is noted that the condition (i) automatically holds by the definition of supremum. It remains to
show that the condition (ii) holds. Let ε > 0. Then L−ε < L. Since L is the least upper bound for
S, L− ε is not an upper bound for S. Therefore, there is an element X0 ∈ S such that L− ε < x0

as desired.
Now for showing the converse statement, assume that the conditions (i) and (ii) hold for the number
L. Then by the definition of the supremum, it needs to show that if L1 is an upper bound for S,
then L ≤ L1. Suppose not, that is, we assume that there is an upper bound L1 for S such that
L1 < L. Then ε := 1/2(L− L1) > 0. The condition (ii) gives an element x0 ∈ S such that

L1 <
1

2
(L1 + L) = L− ε < x0 ≤ L.

The last statement can be obtained by considering −S in the first assertion above. �

Axiom of Completeness of R: Every bounded above non-empty subset of R must have the least
upper bound, that is, the supremum of a bounded above non-empty subset of R must exist.

Proposition 1.6. Let A and B be non-empty bounded above subsets of R. Put A+B := {x+ y :
x ∈ A, y ∈ B}. Then we have sup(A+B) = supA+ supB.

Proof. Note that L1 := supA and L2 := supB exist by the Axiom of Completeness. It is clear
that L1 + L2 is an upper bound for the set A + B. By using Theorem 1.5, it suffices to show the
condition (ii) in Theorem 1.5 holds. Let ε > 0. Then by Theorem 1.5, there are elements a ∈ A
and b ∈ B such that L1 − 1

2ε < a and L2 − 1
2ε < b. Hence, we have L1 + L2 − ε < a+ b. Thus the

condition (ii) holds for the set A+B. The proof is finished. �

Proposition 1.7. If S is a bounded below non-empty subset of R, then inf S must exist.

Proof. Note that the set −S is bounded above. Then by the completeness of R, sup(−S) exists
and hence, inf S = − sup(−S) must exist. �

Theorem 1.8. Archimedean Property: For each x ∈ R, there is a positive integer n such that
x < n.

Proof. The proof is shown by the contradiction. Suppose that there is a real number M such that
n ≤ M for all n ∈ Z+. Thus, the set of all positive integers Z+ is bounded above. The Axiom of
Completeness tells us that the supremum L := supZ+ must exist. Then by considering ε = 1 in
Theorem 1.5, there is an element m ∈ Z+ such that L− 1 < m and hence, L < m+ 1. This implies
that n < m+ 1 for all n ∈ Z+. It leads to a contradiction because m+ 1 ∈ Z+. �

Corollary 1.9. inf{1/n : n = 1, 2...} = 0.

Proof. Let S := {1/n : n = 1, 2...}. It is noted that 0 is a lower bound for the set S. By using
Theorem 1.5, it needs to show that for any ε > 0, there is an element a ∈ S such that a < 0 + ε.
Now let ε > 0. Then by Archimedean property, there is a positive integer N such that 1/ε < N .
Thus, we have 1/N ∈ S and 1/N < ε as required. The proof is finished. �
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Definition 1.10. We say that a subset A of R is dense in R if (a, b) ∩A 6= ∅.

Example 1.11. The set of all integers Z is not dense in R.

The following shows that the set of rational numbers a dense subset of R which Q is an important
dense subset.

Proposition 1.12. For each pair of real numbers a and b with a < b, then we have (a, b)∩Q 6= ∅.
In this case, the set of all rational numbers is dense in R.

Proof. Note that we may assume 0 < a < b. (Why?) By using Corollary 1.9, there is a positive
integer N such that 1/N < b − a and hence, we have 1 < Nb − Na. On the other hand, let
p := max{k ∈ N : k ≤ Na}. This implies that Na < p + 1. In addition, since Nb − Na > 1, we

have p + 1 < Nb. Therefore, we have Na < p + 1 < Nb. Thus, p+1
N ∈ Q ∩ (a, b). The proof is

finished. �

Before showing the following proposition, we have a simple but useful observation first.

Lemma 1.13. Let e, f ∈ R. Then we have e ≤ f if and only if for all ε > 0, we have e < f + ε.

Proposition 1.14. There is a unique real number x such that x2 = 2. Consequently, such real
number is irrational.

Proof. Let S := {x > 0 : x2 ≤ 2}. Note that 1 ∈ S, hence, S 6= ∅. On the other hand, if x > 2,
then x2 > 4. This implies that the set S is bounded by 2 and thus, the set S is bounded above.
Then the Axiom of Completeness assures that a := supS exists. We are going to show that a2 = 2
as required.
We first note that by the characterization of the sup, for each positive integer n, there is an element
xn ∈ S such that a− 1

n < xn. This implies that

(1.1) a2 < (xn +
1

n
)2 = x2

n +
2

n
xn +

1

n2
< 2 +

4

n
+

1

n2

It is noted that we have 4
n + 1

n2 <
5
n for all positive integer n. Therefore, we have inf{ 4

n + 1
n2 : n =

1, 2....} = 0 because inf{1/n : n =, 1, 2....} = 0. This implies that for any ε > 0, there is a positive
integer m such that 4

m + 1
m2 < ε. Therefore, we have

a2 < ε

for all ε > 0. Lemma 1.13 implies that a2 ≤ 2.
Finally, it remains to show that a2 < 2 is impossible. Assume that a2 < 2. Then by using the fact
inf{ 4

n + 1
n2 : n = 1, 2....} = 0 again, one can choose a positive integer N such that 4

N + 1
N2 < 2−a2,

and hence, we have

a2 < a2 +
4

N
+

1

N2
< 2.

This implies that

a2 < (a+ 1/N)2 = a2 +
2

N
a+

1

N2
≤ a2 +

4

N
+

1

N2
< 2.

Thus, we have (a+ 1/N) ∈ S and a < a+ 1/N . It leads to a contradiction. Therefore, a2 = 2.
The uniqueness clearly follows from the fact that if a2 = b2 = 2, then we have a2− b2 = (a− b)(a+
b) = 0.
Now write

√
2 := supS. Then by above we have (

√
2)2 = 2. Suppose that

√
2 = p/q is rational,

for some positive integers p and q. We have p2 = 2q2. Then by the Unique Prime Factorization
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theorem, there are natural numbers n and s such that p = 2ns and s is not divided by 2. Similarly,
there are natural numbers m and t such that q = 2mt and t is not divided by 2. Thus, we have

22ns2 = p2 = 2q2 = 2 · 22mt2 = 22m+1t2.

From this we have 2n = 2m+ 1. It is impossible. The proof is complete. �

Theorem 1.15. For any open interval (a, b), we have (a, b) ∩Qc 6= ∅, i.e., the set of all irrational
numbers is dense in R.

Proof. We may assume that a > 0 and hence, we have
√

2a <
√

2b. Since Q is dense in R, there is
an element r ∈ Q ∩ (

√
2a,
√

2b). Hence, we have

a <
r√
2
< b.

Since
√

2 is irrational and r is rational, we see that the number r√
2

is irrational as required. �

2. Sequences

A sequence of real numbers means that it is a real-valued function x defined on Z+ (or N). Write
xn := x(n) for n = 1, 2... and x = (xn).

The following definition plays a very important role in mathematics.

Definition 2.1. We say that a sequence (xn) is convergent if there is a number L ∈ R which
satisfies the following condition:
For any ε > 0, there is a positive integer N = N(ε) (depends on the choice of ε), such that

|xn − L| < ε whenever n ≥ N.
In this case, we say that (xn) converges to L and L is a limit of (xn). If such L does not exist, we
say that (xn) is divergent.

Remark 2.2. Using the notation above, we have:

(i) A number ` is Not a limit of (xn) if there is ε > 0 such that for any positive integer N , we
can find a positive integer n with n ≥ N so that |xn − `| ≥ ε.
Warning: in this case, it does not imply that (xn) is divergent !!!!

(ii) The Definition 2.1 is clearly equivalent to the following statement:
there is a constant C > 0 such that for any η > 0, there is a positive integer N satisfying
|xn − L| < Cη as n ≥ N .

The following is one of important properties of limits.

Proposition 2.3. If (xn) is a convergent sequence, then its limit is unique.
In this case, we write limxn for “the” limit of (xn).

Proof. Let L and L′ be limits of (xn). Then for any ε > 0, there are positive integers N and N ′

such that |xn −L| < ε for any n ≥ N and |xn −L′| for any n ≥ N ′. Now if we choose a positive m
so that m ≥ N and m ≥ N ′, then we have

|L− L′| ≤ |L− xm|+ |xm − L′| < 2ε.

Therefore, we have |L − L′| < 2ε for all ε > 0. This implies that |L − L′| = 0 and thus, L = L′.
Otherwise, if we choose 0 < ε < 1

4 |L− L
′|, then it leads to a contradiction. �
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Example 2.4. Show that if xn := n+1
n−1 for n = 2, 3.., then the sequence limxn = 1.

Proof. Note that for each positive integer n with n ≥ 2, we have |xn − 1| = 2
n−1 . Now let ε > 0.

Therefore, we have |xn − 1| < ε if and only if 2
ε + 1 < n. The Archimedean property tells us that

there is a positive integer N such that N > 2
ε + 1. Hence, we have |xn − 1| < ε as n ≥ N . The

proof is complete. �

Example 2.5. Let xn = (−1)n for n = 1, 2.... Show that the sequence (xn) is divergent.

Proof. Warning: It is clear that neither 1 nor −1 both is the limit of the sequence of (xn). However,
we cannot conclude from the Definition 2.1 that the sequence (xn) is divergent since the sequence
(xn) may converge to the number which is other than 1 and −1.
Now suppose that the sequence (xn) is convergent with L := limxn. Now if for each positive
integer N , put AN := {xn : n ≥ N}, then AN = {1,−1}. Therefore, for any positive integer N the
intersection (L− 1/4, L+ 1/4)∩AN contains at most one point. This implies that for any positive
integer N , there is m ≥ N such that xm /∈ (L− 1/4, L+ 1/4), that is, |xm − L| ≥ 1/4. It leads to
a contradiction since L is the limit of (xn) by the assumption. �

Example 2.6. Show that if xn = n for all n = 1, 2..., then the sequence (xn) is divergent.

Proof. suppose not, we assume that the sequence (xn) converges to some number L. Then by
Definition 2.1, if we consider ε = 1, then there is a positive integer N such that |xn−L| < 1 for all
n ≥ N and thus, n < |L|+ 1 for all n ≥ N . This implies that n < |L|+ 1 for all positive integers
n. This contradicts to the Archimedean property. �

Using the similar idea as the proof of Example 2.6, one can obtain a more general result as follows.

Proposition 2.7. Every convergent sequence is bounded.

Proof. Let (xn) be a convergent sequence with the limit L. If we take ε = 1 in the Definition 2.1,
there is a positive integer N such that |xn − L| < 1 for all n ≥ N . Hence, we have |xn| < |L| + 1
for all n ≥ N . Thus, if we take M := max{|x1|, ..., |xN−1|, |L|+ 1}, then we have |xn| ≤ M for all
n = 1, 2, ... Thus, (xn) is bounded. �

Proposition 2.8. Let (xn) and (yn) be the convergent sequences. Let a := limxn and b := lim yn.
We have the following assertions.

(i) (xn + yn) is convergent with lim(xn + yn) = a+ b.
(ii) The product (xnyn) is convergent with limxnyn = ab.

(iii) If yn 6= 0 for all n and b 6= 0, then the sequence (xn/yn) is convergent and limxn/ym = a/b.

Proof. For showing (i): let ε > 0. Then there is a positive integer N such that |xn − a| < ε and
|yn − b| < ε for all n ≥ N . This implies that

|(xn + yn)− (a+ b)| ≤ |xn − a|+ |yn − b| < 2ε

for all n ≥ N . Thus, (xn + yn) is convergent with lim(xn + yn) = a+ b.
For (ii), let ε > 0 and let N be chosen as in Part (i). Since (yn) is convergent, (yn) is bounded and
hence, there is M > 0 such that |yn| ≤M for all n. Hence, the triangle inequality implies that

|xnyn − ab| ≤ |xnyn − ayn|+ |ayn − ab| ≤ |xn − a||yn|+ |a||yn − b| ≤ (M + |a|)ε
for all n ≥ N . This implies that (xnyn) is convergent and limxnyn = ab.
For showing (iii), it suffices to show that the sequence ( 1

yn
) converges to 1/b by using Part (ii).

Let ε > 0 and N be as in Part (i) again. It is noted that since b 6= 0, by using the Definition 2.1
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there is a positive integer N1 > N such that |yn − b| < |b|
2 for all n ≥ N1. This gives |yn| > |b|

2 for
all n ≥ N1. Hence, we have

| 1

yn
− 1

b
| = |yn − b|

|yn||b|
≤ 2

|b|2
ε

for all n ≥ N1. The proof is complete. �

Proposition 2.9. Let (xn) and (yn) be the convergent sequences with the limits a := limxn and
b := lim yn. If xn ≤ yn for all n = 1, 2..., then a ≤ b.

Proof. It suffices to show that a < b+ε for all ε > 0; otherwise, if b < a, then by taking ε = a−b > 0
we have a < b+ (a− b) = a which is impossible. Now let ε > 0. Then there is a positive integer N
such that |xN − a| < ε and |yN − b| < ε. This implies that

a− ε < xN ≤ yN < b+ ε.

Thus, we have a < b+ 2ε. The proof is complete. �

Proposition 2.10. Let (xn), (yn) and (zn) be the sequences which satisfy xn ≤ yn ≤ zn for all n.
If a := limxn = lim zn, then (yn) is convergent and lim yn = a.

Proof. Let ε > 0. Then by the Definition 2.1, there is a positive integer N such that |xn − a| < ε
and |zn − a| < ε for all n ≥ N . This implies that

a− ε < xn ≤ yn ≤ zn < a+ ε

for all n ≥ N . Hence, we have |yn − a| < ε for all n ≥ N . The proof is finished. �

Proposition 2.11. let S be a non-empty bounded above subset of R. Then a number L = supS if
and only if L is an upper bound for S and there is a sequence (xn) in S such that limxn = L.

Proof. For showing (⇒), assume L = supS. Then L is an upper bound for S by the definition. It
suffices to show that there is a sequence (xn) in S such that limxn = L. Recall the characterization
of supremum that for any ε > 0, there is an element x ∈ S such that L − ε < x. From this for
each positive integer n, there is an element xn ∈ S such that L − 1

n < xn ≤ L. This implies that

|xn − L| < 1
n for all n and thus, limxn = L as required.

The converse is clear due to the characterization of supremum again. �

Definition 2.12. A sequence (xn) is said to be increasing (resp. decreasing) if xn ≤ xn+1 (resp.
xn ≥ xn+1 for all n.

Theorem 2.13. Let (xn) be an increasing (resp. decreasing) sequence. Then (xn) is convergent if
and only if (xn) is bounded. In this case, we have limxn = sup{xn : n = 1, 2...} (resp. limxn =
inf{xn : n = 1, 2...}).

Proof. Assume that (xn) is increasing. It is noted that this part (⇒) is always true even (xn) is
not increasing.
Now for showing the part (⇐), assume that (xn) is bounded. Then the set S := {xn : n = 1, 2, ...}
is bounded. The Axiom of Completeness tells us that L := sup(S) exists. We are going to show
that limxn = L. In fact, for any ε > 0, there is an element xN ∈ S such that L− ε < xN because
L = sup(S). Since (xn) is increasing, we have L − ε < xN ≤ xn ≤ L for all n ≥ N . Hence,
|xn − L| < ε for all n ≥ N . Therefore, (xn) converges to L as desired.
When (xn) is decreasing, the assertion can be obtained by considering the sequence (−xn). �
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Example 2.14. Then the following limit exists

e := lim(1 +
1

n
)n.

Proof. For each positive integer, let

xn = (1 +
1

n
)n.

They by using Proposition 2.13, it suffices to show that (xn) is a bounded increasing sequence.
We first claim that (xn) is increasing. In fact, by the Binomial Theorem, we see that

(2.1) xn = 1 + 1 +
n∑
k=2

n(n− 1) · · · (n− k + 1)

k!

1

nk
=

n∑
k=1

1

k!
(1− 1

n
)(1− 2

n
) · · · (1− k − 1

n
).

It is noted that each term in above is positive and the coefficients of 1
k! for 2 ≤ k ≤ n in xn and

xn+1 are

(1− 1

n
)(1− 2

n
) · · · (1− k − 1

n
) and (1− 1

n+ 1
)(1− 2

n+ 1
) · · · (1− k − 1

n+ 1
)

respectively. From this we see that xn ≤ xn+1 for all n and thus, the sequence (xn) is increasing.
It remains to show that (xn) is bounded. In fact, for each 2 ≤ k ≤ n we have

1

k!
(1− 1

n
)(1− 2

n
) · · · (1− k − 1

n
) <

1

2k
.

Then

xn < 1 + 1 +

n∑
k=1

1

2k
< 3.

The proof is complete. �

Remark 2.15. The limit e in the Example 2.14 above is very important in mathematics which is
called the natural base today. It was first induced by Euler. In fact, xn := (1 + 1

n)n is motivated
by the Compound interest formula.

Theorem 2.16. Nested Intervals Theorem Let (In := [an, bn]) be a sequence of closed and
bounded intervals. Assume that I1 ⊇ I2 ⊇ I3 ⊇ . . . . Then we have

⋂∞
n=1 In 6= ∅.

Furthermore, if we further assume that limn(bn − an) = 0, then there is a unique real number c
such that

⋂∞
n=1 In = {c}.

Proof. It is noted that since (In) is a decreasing sequence of closed and bounded intervals, we have

a1 ≤ a2 ≤ · · · ≤ an < bn ≤ bn−1 ≤ · · · ≤ b2 ≤ b1
for all positive integers n. Therefore, (an) and (bn) are bounded and they are increasing and
decreasing and respectively. This implies that (xn) and (yn) both are convergent and a := lim an =
sup{an : n = 1, 2...} and b := lim bn = inf{bn : n = 1, 2...}. In addition, we have a ≤ b because
an ≤ bn for all n. Thus, if we fix some c such that a ≤ c ≤ b, then c ∈

⋂∞
n=1 In as desired because

we have an ≤ a ≤ c ≤ b ≤ bn for all n.
It remains to show

⋂∞
n=1 In = {c} if lim(bn − an) = 0. In fact,if c c′ in

⋂∞
n=1 In, then we have

|c−c′| ≤ |bn−an| for all n. This implies that |c−c′| = 0 and thus, c = c′. The proof is finished. �

Remark 2.17. The assumption of the boundedness and closeness of the intervals In cannot be
removed in the Nest Intervals Theorem.
For example, if In := (0, 1

n) and Jn := [n,∞), for all n = 1, 2, ..., then
⋂
In =

⋂
Jn = ∅.
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3. Subsequences

Definition 3.1. A subsequence (xnk
)∞k=1 of a sequence (xn) means that (nk)

∞
k=1 is a sequence of

positive integers satisfying n1 < n2 < · · · < nk < nk+1 < · · · , that is, such sequence (nk) can be
viewed as a strictly increasing function n : k ∈ {1, 2, ..} 7→ nk ∈ {1, 2, ...}.

Remark 3.2. In this case, note that for each positive integer N , there is K ∈ N such that nK ≥ N
and thus we have nk ≥ N for all k ≥ K.

Proposition 3.3. If (xn) is a convergent sequence, then any subsequence (xnk
) of (xn) converges

to the same limit. In this case, we have limk xnk
= limxn.

Proof. We assume that limxn = a ∈ R exists. Let (xnk
) be a subsequence of (xn). We claim

that limxnk
= a. Let ε > 0. In fact, since limxn = a, there is a positive integer N such that

|a− xn| < ε for all n ≥ N . Note that by the definition of a subsequence, there is a positive integer
K such that nk ≥ N for all k ≥ K. Hence, we see that |a− xnk

| < ε for all k ≥ K. Thus we have
limk→∞ xnk

= a. The proof is complete. �

Theorem 3.4. Bolzano-Weierstrass Theorem (write B-W Theorem for short):
Every bounded sequence has a convergent subsequence.

Proof. We give two different proofs in here, however, each proof basically is due to the Axiom of
Completeness.
Let (xn) be a bounded sequence and put X := {xn : n = 1, 2, ..}. The Theorem clearly holds if
X is a finite set. In fact in this case, there must have an element xm appears infinite many times.
Hence, we can choose a subsequence (xnk

) so that xnk
≡ xm for all k = 1, 2.... Thus we may assume

that the set X is infinite.
Method 1:
Since (xn) is bounded, there is a closed and bounded interval I1 = [a1, b1] such that xn ∈ I1 for all
n. Put xn1 := x1.
It is noted that one of the following sets must be infinite:

A2 := {n ∈ Z+ : xn ∈ [a1,
a1 + b1

2
]}; B2 := {n ∈ Z+ : xn ∈ [

a1 + b1
2

, b1]}.

We may assume that the set A2 is infinite. Hence there is an element n2 ∈ A2 such that n1 < n2.
Put I2 := [a2, b2] = [a1,

a1+b1
2 ]. Thus xn2 ∈ I2. Similarly, one of the following sets is infinite:

A3 := {n ∈ Z+ : xn ∈ [a2,
a2 + b2

2
]}; B3 := {n ∈ Z+ : xn ∈ [

a2 + b2
2

, b2]}.

In addition, we may assume that the set A3 is infinite. Hence, there is an element n3 ∈ A3 such
that n1 < n2 < n3. Put I3 := [a3, b3] = [a2,

a2+b2
2 ]. Thus, xn3 ∈ I3. By repeating the same step,

we can get a decreasing sequence of a closed and bounded intervals Ik = [ak, bk] and a subsequence
(xnk

) of (xn) such that the following conditions hold:

(1) lim(bk − ak) = lim 1
2k

(b1 − a1) = 0.
(2) xnk

∈ Ik for all k = 1, 2....

The Nest Intervals Theorem tells us that there is a number c such that c ∈ Ik for all k and hence,
we have |xnk

− c| ≤ (bk − ak) = 1
2k

(b1 − a1)→ 0. Therefore the subsequence (xnk
) is convergent as

required. The proof is finished.
Method 2
This method is the Weierstrass’ original proof.
Recall our assumption that the set X = {xn : n = 1, 2...} is infinite. Let

S := {x ∈ R : (x,∞) ∩X is infinite}.
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We first note that since (xn) is bounded, there are real numbers m and M so that m ≤ xn ≤ M
for all n. Since the set X = {xn : n = 1, 2...} is infinite, the set S is a bounded above non-empty
set because m ∈ S and x ≤M for all x ∈ S. The Axiom of Completeness implies that L := sup(S)
must exist. We want to show that there is a subsequence (xnk

) of (xn) which converges to L.
Claim: For any ε > 0, there is an element u ∈ S such that |u−L| < ε and (u, L+ε]∩X is infinite.
In fact, if let ε > 0, then by the characterization of the supremum there is an element u ∈ S such
that L− ε < u. Since u ∈ S, we have (u,∞) ∩X is infinite. It implies that the set (u, L+ ε] ∩X
must be infinite, otherwise, (L+ ε,∞)∩X is infinite and thus, L+ ε ∈ S by the construction of S.
It leads to a contradiction because L is an upper bound for S. Thus, the Claim follows.
Now for ε = 1, then there is u1 ∈ S such that L − 1 < u1 < L + 1. Then by the Claim above,
choose xn1 ∈ (u1, L+ 1] and hence, L− 1 < xn1 ≤ L+ 1. Next, we considering ε = 1/2,then there
is an element u2 ∈ S such that the set (u2, L+ 1/2] is infinite by the Claim above again. Therefore
we can find xn2 such that n1 < n2 and L− 1/2 < u2 < xn2 ≤ L+ 1/2. By repeating the same step
and considering ε = 1

k for k = 1, 2... in the Claim above, we can get a subsequence (xnk
) of (xn)

such that L− 1
k ≤ xnk

≤ L+ 1
k for all k = 1, 2.... Therefore, (xnk

) is a convergent subsequence of
(xn) with the limit L. The proof is complete. �

Remark 3.5. The assumption of the boundedness of (xn) cannot be removed. For example, let
xn = n for all n = 1, 2.... Then (xn) does not have a convergent subsequence because |xn− xm| ≥ 1
for n 6= m.

Proposition 3.6. Let (xn) be a bounded sequence. For each positive integer n, put

an := inf{xk : k ≥ n} and bn := sup{xk : k ≥ n}.
Then we have

(i) The limits lim an and lim bn must exist and lim an ≤ lim bn. In this case, we write limxn :=
lim an (called the lim inf of (xn)) and limxn = lim bn (called the lim sup of (xn)).

(ii) (xn) is convergent if and only if limxn = limxn. In this case, we have limxn = limxn =
limxn.

(iii) There exists a subsequence (xnk
) of (xn) such that limxnk

= limxn. Consequently, the
Bolzano-Weierstrass Theorem holds.

Proof. For showing part (i), we note that if an ≤ xk for all k ≥ n, then an ≤ xk for k ≥ n + 1.
Thus, we have an ≤ an+1 for all n. Similarly, we have bn+1 ≥ bn. Thus, we have a1 ≤ · · · an ≤
an+1 ≤ bn+1 ≤ bn ≤ · · · ≤ b1 for all n. This implies that (an) and bn both are bounded monotone
sequences. Therefore, lim an and lim bn both exist. In fact, we have

limxn = sup
n

inf
k≥n

xk ≤ limxn = inf
n

sup
k≥n

xk.

For part (ii), we first assume that l := limxn exists. Thus, for any ε > 0, there is a positive integer
N such that l − ε < xn < l + ε for all n ≥ N . Then by the definition of an and bn, we have

l − ε ≤ an ≤ bn ≤ l + ε

for all n ≥ N . Thus, we have |bn − an| ≤ 2ε for all n ≥ N . By taking n → ∞, this gives
|limxn − limxn| ≤ 2ε for all ε > 0, and hence, we have limxn = limxn.
Now for showing the converse (Leftarrow), we assume that we have l := limxn = limxn. Then for
any ε, there is a positive integer N so that l − ε < an ≤ bn < l + ε for all n ≥ N . Since we always
have an ≤ xk ≤ bn for all k ≥ n. Therefore, we have l − ε < xk < l + ε for all k ≥ N and hence,
limxk = l.
For proving part (iii), we are going to construct a subsequence (xnk

) of (xn) so that limxnk
=

limxn. Let L := limxn. It is noted that for any ε > 0, there is a positive integer N so that
L− ε < bn := supk≥n xk < L+ ε for all n ≥ N . This implies that xk < L+ ε for all k ≥ N .
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If we fix n ≥ N , since L − ε < bn for all n ≥ N , we can choose η > 0 such that L − ε < bn − η.
Using the characterization of surpemum, we have L− ε < bn− η < xm for some m ≥ n. Therefore,
we have shown that

(3.1) ∀ε > 0,∃N, ∀n ≥ N, ∃m ≥ n so that L− ε < xm < L+ ε.

Now for considering ε = 1 in 3.1, there is N1 so that L− 1 < xn1 < L+ 1 for some n1 ≥ N1. Next,
for considering ε = 1/2 in 3.1, there is N2 so that for any n ≥ N2, we have L−1/2 < xm < L+ 1/2
for some m ≥ n. Thus, if we choose n > N2 and n > n1, then there is n2 ≥ n so that n2 > n1 and
L− 1/2 < xn2 < L+ 1/2.
Similarly, if we take ε = 1/3, there is a positive integer N3 so that for any n ≥ N3 we have
L− 1/3 < xm < L+ 1/3 for some m ≥ n. Therefore, if we take n > N3 and n > n2, then there is
n3 ≥ n such that L− 1/3 < xn3 < L+ 1/3 and n3 > n2.
To repeat the same steps, we get a strictly increasing sequence of positive integers (nk) so that
L− 1/k < xnk

< L+ 1/k for all k. Thus, (xnk
) is a convergent subsequence with the limit L. The

proof is complete. �

Proposition 3.7. Let (xn) and (yn) be bounded sequences. Then we have

(i) lim(−an) = −liman.
(ii) lim(axn) = a(limxn) for a ≥ 0.

(iii) limxn + limyn ≤ lim(xn + yn) ≤ lim(xn + yn) ≤ limxn + limyn

Proof. Parts (i) and (ii) are clear. We want to show part (iii) and claim that

lim(xn + yn) ≤ limxn + limyn.

Let b := limxn and c := limyn. Let ε > 0. Then there is a positive integer N such that bn < b+ε and
cn < c+ε for all n ≥ N . This implies that xk+yk ≤ bn+cn < b+c+2ε for all k ≥ n ≥ N . Therefore,
we have supk≥n(xk+yk) < b+c+2ε for all n ≤ N and thus, lim(xn+yn) = limn supk≥n(xk+yk) <

b+ c+ 2ε for all ε > 0. This gives lim(xn + yn) = limn supk≥n(xk + yk) < b+ c as desired.
By considering the sequences (−xn) and (−yn) in above, we see that limxn + limyn ≤ lim(xn + yn).
the proof is complete. �

Remark 3.8. It is noted that in general we don’t have the equality lim(xn + yn) = limxn + limyn.
For example, if we let xn = (−1)n+1 and yn = (−1)n, then lim(xn + yn) < limxn + limyn.

4. Compact Sets

Motivated by the Bolzano-Weierstrass Theorem, the following notation plays a very important
role in Mathematics.

Definition 4.1. A subset A of R is said to be compact if for any sequence (xn) in A, there is a
convergent subsequence (xnk

) of (xn) such that limxnk
∈ A.

Example 4.2. Clearly, R and (0, 1) are not compact.

Proposition 4.3. Every closed and bounded interval is compact.

Proof. Recall a closed and bounded interval that it is a set [a, b] := {x : a ≤ x ≤ b} for some
−∞ < a < b <∞.
Let (xn) be a sequence in [a, b]. Then (xn) is a bounded sequence. The Bolzano-Weierstrass
Theorem gives a convergent subsequence (xnk

). It is noted since a ≤ xnk
≤ b for all k = 1, 2.., we

have a ≤ limxnk
≤ b. Thus, limxnk

∈ [a, b] as desired. �
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Remark 4.4. However, a compact set need not be a closed and bounded interval. For example,
[0, 1] ∪ {2} is a compact set but it is not an interval.

In the remainder of this section, we give a characterization of a compact set.

Definition 4.5. Let A be a subset of R. A point x is called a limit point (or cluster point) of A if
for any ε > 0, there is an element a ∈ A such that 0 < |x− a| < ε, i.e., there is an element a ∈ A
with x 6= a such that |x− a| < ε. We write D(A) for the set of all limit points of A.
Furthermore, A is said to be closed if D(A) ⊆ A.

Example 4.6.

(i) If A = (0, 1] ∪ {2}, then D(A) = [0, 1]. Hence, A is not closed since 0 ∈ D(A) \A.
(ii) If A = Z, then D(A) = ∅ and thus, Z is a closed set.

Proposition 4.7. Let A be a subset of R. Then the following statements are equivalent.

(i) A is closed.
(ii) If (xn) is a sequence in A and is convergent, then limxn ∈ A.

Proof. For (i)⇒ (ii), assume that A is closed but the condition (ii) does not hold. Then there is a
convergent sequence (xn) in A but the limit l := limxn /∈ A. Since A is closed, D(A) ⊆ A. Thus, l
is not a limit point of A. This implies that there is δ > 0 so that ((l− δ, l+ δ) \ {l})∩A = ∅. Since
limxn = l, there is a positive integer N such that |xN − l| < δ. Note that we have l 6= xN because
l /∈ A. Hence, xN ∈ ((l − δ, l + δ) \ {l}) ∩A which leads to a contradiction. Therefore, (ii) holds.
For (ii)⇒ (i), let z ∈ D(A). Then for any ε > 0, there is an element x ∈ A such that 0 < |x−z| < ε.
Therefore, for each positive integer n, there is an element xn ∈ A such that 0 < |xn − z| < 1/n
and thus, z := limxn. The assumption (i) implies that z ∈ A. Therefore, D(A) ⊆ A. The proof is
complete. �

Theorem 4.8. Let A be a subset of R. Then A is compact if and only if A is a closed and bounded
subset.

Proof. For showing the necessary part, we assume that A is compact.
We first claim that A is bounded. Suppose that A is unbounded. If we fix an element x1 ∈ A, then
there is x2 ∈ A such that |x1 − x2| > 1. Using the unboundedness of A, we can find an element x3

in A such that |x3 − xk| > 1 for k = 1, 2. To repeat the same step, we can find a sequence (xn) in
A such that |xn − xm| > 1 for n 6= m. Thus A has no convergent subsequence. Thus A must be
bounded
Finally, we show that A is closed. Let (xn) be a sequence in A and it is convergent. It needs to
show that limn xn ∈ A. Note that since A is compact, (xn) has a convergent subsequence (xnk

)
such that limk xnk

∈ A. Then by Proposition 3.3, we see that limn xn = limk xnk
∈ A. The proof

is finished.
Conversely, we suppose that A is closed and bounded. Let (xn) be a sequence in A and thus (xn)
is a bounded sequence in R. Then by the Bolzano-Weierstrass Theorem, (xn) has a convergent
subsequence (xnk

). Since A is closed, limk xnk
∈ A. Therefore, A is compact. �

Example 4.9. Let A = {1/n : n = 1, 2, ...} ∪ {0}. Then A is a compact set.
A is clearly bounded. Then by Theorem 4.8, it suffices to show that the set A is closed. Clearly,
0 ∈ D(A). We are going to show D(A) = {0}. In fact, if z 6= 0, clearly we can find some r > 0
such that the intersection (z − r, z + r) ∩ A contains at most one point. Therefore, if z 6= 0, then
z /∈ D(A). Thus, D(A) = {0}. Hence, the set A is closed as desired.
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Definition 4.10. For a subset A of R, put

A = A ∪D(A).

The set A is called the closure of A.

Example 4.11. We have the following examples.

(1) (0, 1] = [0, 1].
(2) Q = R.
(3) Z = Z.

Proposition 4.12. Let A be a subset of R. Then we have the following assertions.

(1) A is closed.
(2) A is closed if and only if A = A.
(3) z ∈ A if and only if for any δ > 0, there is an element a ∈ A so that |z− a| < δ if and only

if there is a convergent sequence (xn) in A so that z = limxn.
(4) A is the smallest closed set containing A, i.e., if B is a closed set containing A, then A ⊆ B.

Proof. For showing part (1), we need to show that D(A) ⊆ A. Suppose not, assume that there is
an element z ∈ D(A) but z /∈ A. Since z /∈ A, there is δ > 0 such that (z − δ, z + δ) ∩ A = ∅. On
the other hand, there is an element b ∈ (z − δ, z + δ) ∩ A because z ∈ D(A). Now choose r > 0
such that (b− r, b+ r) ⊆ (z− δ, z+ δ). Using the definition of limit points again, we can find some
element a ∈ A such that a ∈ (b− r, b+ r) and thus, a ∈ (z− δ, z+ δ)∩A. It leads to a contradiction
because (z − δ, z + δ) ∩A = ∅ by the choice of δ.
Parts (2)-(4) can be shown by the definition of limit points directly. Try to do it by yourself. �

Recall that a subset A of R is said to be dense in R if for any open interval I, we have I ∩A 6= ∅.

Proposition 4.13. Let A be a subset of R. Then A is dense in R if and only if A = R.

Proof. For showing (⇒): assume that A is a dense set. Let z ∈ R. Then for any δ > 0, we have
(z − δ, z + δ) ∩A 6= ∅ by the definition of a dense set. Hence, there is a ∈ A such that |z − a| < δ.
Thus, z ∈ A by Proposition 4.12(3) above.
Conversely, assume that A = R. Let I be an open interval. We want to show I ∩ A is non-empty.
Fix an element z ∈ I. Since I is an open interval, we can choose δ > 0 such that (z− δ, z + δ) ⊆ I.
Since A = R, by using Proposition 4.12(3) again, there is an element a ∈ A such that |z − a| < δ.
Therefore, a ∈ (z − δ, z + δ) ∩A and hence, I ∩A 6= ∅. The proof is finished. �

5. Cauchy sequences

The following notation is the landmark in the development of the 20th century mathematics.

Definition 5.1. A sequence (xn) is called a Cauchy sequence if it satisfies the following condition:

for any ε > 0, there is a positive integer N so that |xm − xn| < ε whenever m,n ≥ N .

Remark 5.2. According to the definition of a Cauchy sequence, a sequence (xn) is not a Cauchy
sequence if there is ε > 0 so that for any positive integer N , we can find some m,n ≥ N such that
|xm − xn| ≥ ε.
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Theorem 5.3. Cauchy Criterion: A sequence (xn) is convergent if and only of it is a Cauchy
sequence.

Proof. The necessary part is clear. In fact, if (xn) is a convergent sequence with the limit L, then
for any ε > 0, there is a positive integer N such that |x−L| < ε for all n ≥ N . Therefore, we have

|xm − xn| ≤ |xm − L|+ |L− xn| < 2ε as m,n ≥ N.
Conversely, we assume that (xn) is a Cauchy sequence.
We first Claim that (xn) is a bounded sequence. In fact, since (xn) is a Cauchy, we can find a
positive integer N1 such that |xm − xN1 | < 1 for all m ≥ N1 and thus, |xm| < 1 + |xN1 | for all
m ≥ N1. Therefore, we have |xm| ≤ max(|x1|, ..., |xN1−1|, |xN1 |+ 1) for all positive integers m.
The Bolzano-Weierstrass Theorem tells us that (xn) has a convergent subsequence (xnk

). Let
L := limk xnk

. If we show that L is the limit of (xn), then the proof is finished.
Let ε > 0. Then there is a positive integer N such that |xm − xn| < ε as m,n ≥ N . On the other
hand, since L = limk xnk

, we can choose K large enough such that |L − xnK | < ε and nK > N .
This implies that for any n ≥ N , we have

|xn − L| < |xn − xnK |+ |xnK − L| < 2ε.

The proof is complete. �

Example 5.4. Let sn =
∑n

k=1 1/k. Then (sn) is not a Cauchy sequence and thus, (sn) is divergent.
In fact, it is noted that for n ≤ m, we have

|sm − sn| =
1

n+ 1
+ · · ·+ 1

m
≥ m− n

m
.

Hence, we always have |s2n − sn| ≥ 1
2 for all n. Thus, if we take ε = 1/2, then for any positive

integer N by taking n = N and m = 2N , we have |s2N − sN | > 1/2 = ε. Hence, (sn) is not a
Cauchy sequence.

Remark 5.5. A sequence (xn) properly converges to +∞ (resp. −∞) if for any M > 0, there
is a positive integer N so that xn > M (resp. xn < −M) for all n ≥ M . In this case, we write
limxn = ∞ (resp. limxn = −∞). Warning!!! In this case, the sequence (xn) is still divergent
since ∞ is NOT a real number, hence, ∞ is not the limit of (xn).
Note that the sequence (sn) in Example 5.4 properly converges to +∞. From this we see that the

sequence (

n∑
k=1

1

nα
)∞n=1 also diverges properly to +∞ if α ≤ 1.

However, a divergent sequence may not converge properly to ∞, for example, if we take xn = 0 as
n is odd; otherwise, xn = n.

Example 5.6. Let tn =
∑n

k=1
1
k2

. Then the sequence (tn) is convergent. Using the Cauchy Theo-
rem, we need to show that (tn) is a Cauchy sequence.
It is noted that for n ≤ m, we have

|tm − tn| =
m∑

k=n+1

1

k2
≤

m∑
k=n+1

1

(k − 1)k
=

m∑
k=n+1

(
1

k − 1
− 1

k
) =

1

n
− 1

m
<

1

n
.

Thus, if we are given ε > 0, then we choose a positive integer N so that 1
n < ε for all n ≥ N .

Therefore, |tm − tn| < ε whenever m ≥ n ≥ N . The proof is complete.

Remark 5.7. We have the following implications in R.
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Axiom of Completeness ⇒ Bounded Monotone Convergent Theorem (Theorem 2.13) ⇒
Nested Intervals Theroem ⇒ Bolzano-Weierstrass Theorem ⇒ Cauchy Theorem.

Everything is due to the Axiom of Completeness.

6. Limits of functions

Throughout this section let f be a real-valued function defined on a subset A of R.
A point x0 is called a limit point of A if for any r > 0, there is some element a ∈ A such that
0 < |x0 − a| < r. We write D(A) for the set of all limit points of A. Note that a limit point of A
may not sit in A.

Definition 6.1. Let c ∈ D(A). A number L is said to be a limit of f at c (note that f(c) may not
be defined!!) if for any ε, there is δ = δ(ε) > 0 (depends the choice of ε) such that

|f(x)− L| < ε whenever x ∈ A and 0 < |x− c| < δ .

(Note: we only consider those points in A which are very close to c but do not equal to c!!!)

Remark 6.2. A number L is not a limit of f at c means if there is ε > 0 so that for any δ, we
can find some x′ ∈ A with |x′ − c| < δ but |f(x′)− L| ≥ ε.

Proposition 6.3. Using the notation as above if f has a limit at c, then its limit is unique.
Consequently, if we write lim

x→c
f(x) for the limit of f at c, then this notation is well defined.

Proof. Let L′ be a another limit of f at c. Let ε > 0. Then by the definition above, there are some
positive numbers δ and δ′ so that |f(x)− L| < ε for any x ∈ A with 0 < |x− c| < δ. Similarly, we
have |f(x)− L′| < ε for any x ∈ A with 0 < |x− c| < δ′. Since c ∈ D(A), we can find some a ∈ A
such that 0 < |c− a| < δ”, where δ” = min(δ, δ′). This gives

|L− L′| ≤ |L− f(a)|+ |f(a)− L′| < 2ε.

Since ε > 0 is arbitrary, we have L = L′ as desired. �

Example 6.4. Let A = (0,∞). Define f(x) := x2 sin 1
x .

(i) Show that limx→0 f(x) = 0.
In fact, it is noted that |x2| ≤ |x| for all x ∈ (0, 1). Let ε > 0. Thus, if we take 0 < δ =
min(ε, 1), then we have

|f(x)− 0| ≤ |x2| ≤ |x| < ε

whenever x > 0 with |x− 0| < δ.
(ii) Using the ε-δ notation, show that limx→0 f(x) 6= 1.

Note that if we take ε = 1/2, then for any δ > 0, we choose a positive integer N such that
0 < | 1

Nπ − 0| < δ, and we have

|f(
1

Nπ
)− 1| = 1 > ε.

Therefore, 1 is not the limit of f at 0.

Proposition 6.5. Using the notation as above, let c be a limit point of A. Then a number L is
the limit of f at c if and only if, whenever a convergent sequence (xn) in A \ {c} with limxn = c,
we have lim f(xn) = L.
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Proof. For showing (⇒),we assume that L = limx→c f(x) exists. Let (xn) be a sequence in A \ {c}
and converges to c. Let ε > 0. Then by the definition of the limit of a function, we can find δ > 0
such that |f(x)−L| < ε whenever x ∈ A with 0 < |x− c| < δ. On the other hand, since limxn = c
and xn 6= c for all n, there is a positive integer N such that 0 < |xn − c| < δ for all n ≥ N and
thus, |f(xn)− L| < ε for all n ≥ N . Thus, the necessary condition holds.
Conversely, we suppose that L is not the limit of f(x) at c. Thus, there is ε > 0 such that for any
δ > 0, we can find some x′ ∈ A with 0 < |x − x′| < δ but |f(x′) − L| ≥ ε. From this, we see that
for each positive integer n, there is xn ∈ A with 0 < |xn − c| < 1/n but |f(xn) − L| ≥ ε. Thus,
the sequence (xn) sits in A \ {c} and converges to c but L is not the limit of the sequence (f(xn)).
Therefore, the converse holds. �

Proposition 6.5, together with Proposition 2.8, we have the following assertion immediately.

Proposition 6.6. Let f and g be the functions defined on A. Let c be a limit point of A. Assume
that L := limx→c f(x) and R := limx→c g(x) both exist. Then we have the following statements.

(1) lim
x→c

(f + g)(x) exists and lim
x→c

(f + g)(x) = L+R

(2) lim
x→c

(f · g)(x) exists and lim
x→c

(f · g)(x) = L ·R.

(3) if we further assume that g(x) 6= 0 for all x ∈ A and R 6= 0, then lim
x→c

(f/g)(x) exists and

lim
x→c

(f/g)(x) = L/R.

The following result is regarded as the Cauchy criterion in the case of functions.

Proposition 6.7. Using the notation as before, limx→c f(x) exists if and only if for any ε > 0,
there is δ > 0 such that |f(x′) − f(x′′)| < ε whenever x′, x′′ ∈ A with 0 < |x′ − c| < δ and
0 < |x′′ − c| < δ.

Proof. For showing (⇒) we assume that L := limx→c f(x) exists. Let ε > 0. Then there is δ > 0
such that |f(x) − L| < ε as x ∈ A with 0 < |x − c| < δ. Thus, if x′, x′′ ∈ A with 0 < |x′ − c| < δ
and 0 < |x′′ − c| < δ, we see that

|f(x′)− f(x′′)| ≤ |f(x′)− L|+ |L− f(x′′)| < 2ε.

Hence, the necessary condition holds.
Note that since c is a limit point of A, we can find a sequence (xn) in A \ {c} such that limxn = c.
Then the necessary condition above implies that (f(xn)) is a Cauchy sequence. In fact, for any
ε > 0, the necessary condition above gives δ > 0 so that |f(x′) − f(x′′)| < ε whenever x′, x′′ ∈ A
with 0 < |x′ − c| < δ and 0 < |x′′ − c| < δ. Since limxn = c, there is a positive integer N such that
|xn − c| < δ for all n ≥ N and hence, we have |f(xn)− f(xm)| < ε for all m,n ≥ N . Thus, (f(xn))
is a Cauchy sequence and thus, L := lim f(xn) exists.
We want to show L = limx→c f(x).
Let ε > 0. Let δ > 0 be given as in the necessary condition above. Now since limxn = c and
lim f(xn) = L, we can choose a large enough positive integer N such that

|f(xN )− L| < ε and 0 < |xN − c| < δ.

This yields
|f(x)− L| < |f(x)− f(xN )|+ |f(xN )− L| < 2ε

as x ∈ A with 0 < |x− c| < δ. The proof is complete.
�

Definition 6.8. Using the notation as before, let f be a function defined on A and let c be a limit
point of A.
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(1) We say that f diverges to +∞ (resp. −∞) as x tends to c if for any M > 0, there is δ > 0
such that f(x) > M (resp. f(x) < −M) as x ∈ A with 0 < |x− c| < δ. In this case, write
limx→c f(x) = +∞ (resp. limx→c f(x) = −∞).

(2) We further suppose that A is not bounded above. We say that f has a limit L as x tends
to +∞ if for any ε > 0, there is a positive number R > 0 such that |f(x)−L| < ε as x ∈ A
with x > R. In this case, a limit must be unique if it exists. Write limx→∞ f(x) = L.
Similarly, one can define the notion limx→−∞ f(x) = L when A is not bounded below.
For simply, when we are talking about notion limx→∞ f(x), A has been assumed to be
unbounded above in advance.

(3) Similarly, one can give a suitable definition for the notion: limx→∞ f(x) = +∞.

Proposition 6.9. Using the notation as before, let f, g be the functions defined on A.

(i) If limx→c f(x) = +∞ and limx→c g(x) exists, then limx→c(f + g)(x) = +∞.
(ii) If limx→c f(x) = +∞ and limx→c g(x) > 0 exists, then limx→c(f · g)(x) = +∞.

(iii) If limx→∞ f(x) = +∞ and limx→c g(x) > 0 exists, then limx→c(f · g)(x) = +∞.

Proof. For showing part (ii), let M > 0. Since l := limx→c g(x) > 0, there is δ1 > 0 so that
g(x) > l − l

2 = l
2 > 0 for all x ∈ A with 0 < |x− c| < δ1. Moreover, limx→c f(x) = +∞, and so we

can find 0 < δ < δ1 such that f(x) > 2M
l as x ∈ A with 0 < |x− c| < δ and hence in this case, we

have

f(x)g(x) >
2M

l
· l

2
= M.

Part (ii) follows.
Using the similar argument, try to finish the proof by yourself. �

Remark 6.10. The assumption of the non-zero limits in Proposition 6.9(ii) and (iii) cannot be
removed. For example, by considering f(x) := 1/x; g(x) := x for x > 0, note that limx→0 f(x) =∞
and limx→0 g(x) = 0 but f(x)g(x) = 1 for all x > 0.

Example 6.11. Let p(x) := anx
n + an−1x

n−1 + · · · + a1x + a0 be a polynomial of degree n > 0,
where x ∈ R. If the leading coefficient an of p is positive, then limx→+∞ f(x) = +∞.
In fact, since an 6= 0, we see that

p(x) = anx
n(1 +

an−1

an
x−1 +

an−2

an
x−2 + · · ·+ a0

an
x−n)

for all x > 0. In addition, since an > 0 and n > 0, clearly we have limx→+∞ anx
n = +∞. The

result follows immediately from Proposition 6.9.

Definition 6.12. A point c is called a right (resp. left) limit point of A if for any r > 0, there
is some x ∈ A such that 0 < x − c < r (resp. 0 < c − x < r), i.e., (c, c + r) ∩ A 6= ∅ (resp.
(c− r, c) ∩A 6= ∅). Write Dr(A) (resp. Dl(A)) for the set of right (resp. left) limit points of A.
Clearly, we have Dr(A) ∪Dl(A) = D(A).

Example 6.13. We have the following examples.

(1) If A = (0, 1) ∪ {2}, then Dr(A) = [0, 1) and Dl(A) = (0, 1].
(2) If A = {1, 1/2, 1/3, ...}, then Dr(A) = {0} and Dl(A) = ∅.

Definition 6.14. Using the notation as above, let c ∈ Dr(A). We say that f has a right (resp.
left) limit L of f at c if for any ε > 0, there is δ > 0 such that |f(x) − L| < ε for all x ∈ A with
0 < x− c < δ (resp. 0 < c− x < δ).
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It is noted that if a right (resp. left) limit exists, then it is unique.
We write limx→c+ f(x) and limx→c− f(x) for the right and left limit respectively.

Example 6.15. Let A = R \ {0}. Define f(x) = 1 if x > 0; otherwise, f(x) = −1. Then
limx→0+ f(x) = 1 and limx→0− f(x) = −1. This function is called the sign function.
We always denote it by sgn(x).

Proposition 6.16. Let c ∈ Dr(A) ∩Dl(A). Then limx→c f(x) exists if and only if limx→c+ f(x)
and limx→c− f(x) both exist and limx→c+ f(x) = limx→c− f(x).
In this case, we have limx→c f(x) = limx→c+ f(x) = limx→c− f(x).

Proposition 6.17. Let f(x) be a function defined on (0,∞) and g(x) = f(1/x). Then limx→+∞ f(x)
exists if and only if limx→0+ g(x) exists.
In this case, we have limx→+∞ f(x) = limx→0+ g(x).

7. Continuous functions

Throughout this section, let A be a non-empty subset of R and let f be a function defined on A.

Definition 7.1. Let c ∈ A. We say that a function f is continuous at c if for any ε > 0, there is
δ > 0 such that |f(x)− f(c)| < ε whenever x ∈ A with |x− c| < δ.
Furthermore, f is said to be continuous on A if it is continuous at every point in A.

Remark 7.2. Using the notation as above, note that

(1) A function f is discontinuous at c if there is ε > 0 so that for any δ > 0, we can find some
x ∈ A satisfying |x− c| < δ but |f(x)− f(c)| ≥ ε.

(2) If a point c ∈ A is not a limit point of A, then a function f is continuous automatically at c.
In fact, if c ∈ A is not a limit point of A, then there is r > 0 such that (c−r, c+r)∩A = {c}.
Therefore, for any ε > 0, we can choose δ = r in the Definition 7.1 above.

Proposition 7.3. Let c ∈ A. Then we have the following assertions.

(i) If c ∈ A is a limit point of A, then f is continuous at c if and only if limx→c f(x) = f(c).
(ii) f is continuous at c if and only if whenever a sequence (xn) in A with limxn = c, we have

lim f(xn) = f(c).

Proof. Part (i) follows directly from the Definition 7.1.
Part (ii) can be obtained by using a similar argument as in Proposition 6.6. Try to do it by
yourself. �

Proposition 7.4. Let c ∈ A and let f, g be functions defined on A. If f, g are continuous at c,
then we have the following assertions.

(i) The function f + g is continuous at c.
(ii) The product f · g is continuous at c.
(iii) Moreover, if g(x) 6= 0 for all x ∈ A, then f/g is continuous at c.
(iv) Moreover, if the image of f is contained in a subset B of R and h : B → R is continuous at
f(c), then the composition h ◦ f is continuous at c.

Proof. The above assertions follows immediately from Propositions 2.8 and 7.3. Alternatively, they
can be shown directly by the definition.
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For showing part (ii), since g is continuous at c, there is δ1 > 0 such that |f(x) − f(c)| < 1 and
hence, |f(x)| < 1 + |f(c)| for all x ∈ A with |x − c| < δ1. Using the continuity of f and g at c,
there exists 0 < δ < δ1 so that |f(x) − f(c)| < ε and |g(x) − g(c)| < ε as x ∈ A and |x − c| < δ.
Therefore, we have

|f(x)g(x)− f(c)g(c)| ≤ |f(x)g(x)− f(c)g(x)|+ |f(c)g(x)− f(c)g(c)| ≤ ε(1 + |g(c)|+ |f(c)|)

as x ∈ A and |x− c| < δ. Part (ii) follows.
By using part (ii), we need to show that the function 1/g(x) is continuous at c. Note that we may
assume g(c) > 0 (otherwise by considering −g(x)). g(x) is continuous at c, and so there is δ1 > 0
so that |g(x) − g(c) < g(c)/2 and hence, g(x) > g(c)/2 for all x ∈ A and |x − c| < δ1. Now let
ε > 0, there is 0 < δ < δ1 so that |g(x)− g(c)| < δ as x ∈ A and |x− c| < δ. Therefore, we have

| 1

g(x)
− 1

g(c)
| = |g(x)− g(c)|

g(x)g(c)
≤ 2ε

g(c)2

for all x ∈ A with |x− c| < δ. The proof of (iii) is complete.
The last assertion follows clearly from the definition. �

Before showing the following important result, we first recall that a subset A is said to be compact
if for any sequence (xn) in A has a convergent subsequence (xnk

) such that limk xnk
∈ A. Moreover,

A is compact if and only if it is a closed and bounded set.

Theorem 7.5. If f is a continuous function defined on a compact set A, then f is a bounded
function. Moreover, there are x1 and x2 in A such that f(x1) = min{f(x) : x ∈ A} and f(x2) =
max{f(x) : x ∈ A}.

Proof. First, we show that f is bounded. Suppose that f is unbounded. Then for each positive
integer n, there is xn ∈ A such that |f(xn)| ≥ n. A is compcat, and so there is a convergent
subsequence (xnk

) with c := limxnk
∈ A. Note that since f is continuous at c, we see that the

sequence (f(xnk
)) converges to f(c) and thus, (f(xnk

)) is a bounded sequence but |f(xnk
)| ≥ nk

for all k. It leads to a contradiction.
Next, we want to show that f(a) = max{f(x) : x ∈ A} for some a ∈ A.
In fact, note that the set {f(x) : x ∈ A} is bounded because f is bounded. Therefore, L :=
sup{f(x) : x ∈ A} exists. Thus, there exists a sequence (xn) in A such that lim f(xn) = L. Using
the compactness of A, there is a convergent subsequence (xnk

) of (xn) with a := limxnk
. Thus, we

have f(a) = lim f(xnk
) and thus, f(a) = L as desired.

By considering −f , we get f(x1) = min{f(x) : x ∈ A} for some x1 ∈ A. The proof is complete. �

Remark 7.6. The assumption of compactness in Theorem 7.5 cannot be removed.
For example if A = [1,∞) and f(x) = 1/x for x ∈ A, then there is no points attains its minimum
on A although f is a bounded function.

Theorem 7.7. If f is a continuous function defined on a compact set, then the image f(A) :=
{f(x) : x ∈ A} is compact.

Proof. It suffices to show that f(A) is a closed and bounded set. We have shown that f(A) is
bounded by Theorem 7.5. We need to show that f(A) is closed. By applying Proposition 4.7,
we need to claim that if (xn) is a sequence in A so that (f(xn)) is convergent, then the limit
L := lim f(xn) ∈ f(A). Indeed, by the compactness of A, (xn) has a convergent subsequence (xnk

)
such that c := limxnk

∈ A. f is continuous at c, and so lim f(xnk
) = f(c) and thus, L = f(c) ∈ f(A)

as required. �
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Remark 7.8. In general, the image of a closed set under a continuous map is not necessarily closed.
For example, A = [1,∞) and f(x) = 1/x, x ∈ A. Note that A is a closed set but f(A) = (0, 1] is
not closed.

Definition 7.9. Two subsets A and B are said to be homeomorphic if there is a bijection f
from A onto B such that f and the inverse f−1 both are continuous. In this case, f is called a
homeomorphism.

Proposition 7.10. Suppose that A and B are homeomorphic. If A is compact, then so is B.

Proof. It can be shown directly by Theorem 7.7. �

Example 7.11. By applying Theorem 7.7, it is impossible to find a continuous surjection from
[0, 1] onto [0, 1) because [0, 1] is compact but [0, 1) is not. Therefore, [0, 1] is not homeomorphic to
[0, 1).

Proposition 7.12. Let A and B be non-empty subsets of R. Let f : A → B be a continuous
bijection. If A is compact, then f is a homeomorphism, i.e., the inverse f−1 is continuous.

Proof. Put y = f(x) and g(y) = f−1(x), x ∈ A. Suppose that the function g is discontinuous
at some b ∈ B. Then, there is ε > 0 so that for any δ > 0, there is y ∈ B so that |y − b| < δ
but |g(y) − g(b)| ≥ ε. By considering δ = 1/n for n = 1, 2, .... Therefore, there is a sequence
(yn) in B so that lim yn = b and |g(yn) − g(b)| ≥ ε for all n. Let xn = g(yn) ∈ A. Then by the
compactness of A, (xn) has a convergent subsequence (xnk

) such that a := limxnk
∈ A. Note that

b = lim ynk
= lim f(xnk

) = f(a) because f is continuous and lim yn = b. Thus, a = g(b). Therefore,
we have lim g(ynk

) = limxnk
= a = g(b) which leads to a contradiction because |g(yn) − g(b)| ≥ ε

for all n. �

Remark 7.13. The assumption of compactness of the domain on Proposition 7.12 cannot be re-
moved. For example, by considering A = [0, 1) ∪ [1, 2] and B = [0, 2], a function f : A → B is
defined by f(x) = x for x ∈ [0, 1) and f(x) = x− 1 for x ∈ [1, 2]. Then f is a continuous bijection
but its inverse is discontinuous at y = 1. Note that A is non-compact in this case.

Theorem 7.14. Intermediate Value Theorem Let f : [a, b] → R be a continuous function.
Assume that f(a) < L < f(b). Then there is c ∈ (a, b) such that f(c) = L.

Proof. If we consider the function x ∈ [a, b] 7→ f(x) − L, then we may assume that L = 0, i.e.,
f(a) < 0 < f(b). We want to show that there is c ∈ (a, b) so that f(c) = 0.
Method 1:
Let S := {x ∈ [a, b] : f(x) > 0. Note that S is non-empty a bounded below set since b ∈ S and
x > b for all x ∈ S. Thus, c := inf S exists. We will show that f(c) = 0. Note that for each positive
integer n, there is xn ∈ S satisfying c ≤ xn < c+ 1/n, and so limxn = c. Since a ≤ xn ≤ b for all
n, we see that c ∈ [a, b]. By the continuity of f and f(xn) > 0 for all n, we have lim f(xn) = f(c)
and f(c) ≥ 0. We want to show that it is impossible if f(c) > 0. Note that c > a since f(a) < 0.
Therefore, there is δ > 0 such that a < c−δ and |f(x)−f(c)| < f(c)/2 as x ∈ [a, b] with |x−c| < δ.
Thus, if we fix a point x1 such that a < c − δ < x1 < c ≤ b, then we have f(x1) > f(c)/2 > 0.
This implies that x1 ∈ S and x1 < c. It is a contradiction because c is a lower bound for the set S.
Therefore, f(c) = 0.
Method 2:
Let [a1, b1] = [a, b]. We want to construct inductively a sequence of closed and bounded intervals
{[ak, bk]}nk=1, where 1 ≤ n ≤ +∞, satisfying the following conditions.
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(1) [a1, b1] ⊇ [a2, b2] ⊇ · · · .
(2) bk − ak = 1

2(bk−1 − ak−1), for all 2 ≤ k ≤ n.
(3) f(ak) < 0 < f(bk), for all 1 ≤ k ≤ n.

Suppose that the sequence of closed and bounded intervals ([ak, bk]) has been constructed for
1 ≤ k ≤ n. We want to construct [an+1, bn+1] so that it satisfies the conditions (1) − (3) above.

Put mn := an+bn
2 . If f(mn) = 0, then the result follows. Otherwise, if f(mn) > 0, then we

put [an+1, bn+1] = [an,mn]. If f(mn) < 0, then we put [an+1, bn+1] = [mn, bn]. Therefore, if
f(mn) 6= 0 for all n = 1, 2..., then we have an infinite sequence of ([ak, bk]) satisfying the conditions
(1)− (3) above. By applying the Nested Intervals Theorem in this case, we have

⋂∞
k=1[ak, bk] = {c}

for some c ∈ [a, b]. Note that we have lim ak = lim bk = c. f is continuous at c, so we have
f(c) = lim f(ak) = lim f(bk). From this, together with the condition (3) above, we have f(c) = 0.
The proof is complete. �

Recall that an interval is a non-empty subset of R which is one of the following forms.

(1) (Bounded case): [a, b]; [a, b); (a, b] and (a, b) for a < b.
(2) (Unbounded case): [a,+∞); (a,+∞); (−∞, b); (−∞, b] and R.

Proposition 7.15. Let A be subset of R. Assume that A has at least two points. Then the
followings are equivalent.

(1) A is an interval.
(2) For each pair of elements a, b ∈ A with a < b, we have [a, b] ⊆ A.

Proof. (1)⇒ (2) is clear. We want to show (2)⇒ (1). Assume that the condition (2) holds.
First, we assume that A is bounded. Then L := supA and l := inf A both exist. Then x ∈ [l, L]
for any x ∈ A, so A ⊆ [l, L]. Now, if L and l are in A, then the condition (2) implies that [l, L] ⊆ A
and thus, A = [l, L]. By using the similar argument for the other cases, i.e., l ∈ A and L /∈ A; l /∈ A
and L ∈ A; l /∈ A and L /∈ A, we see that A is equal to [l, L); (l, L] and (l, L) respectively.
Similarly, the result can be obtained in the unbounded case. �

Theorem 7.16. Let f be a continuous function defined on A. If A is an interval, then so is its
image f(A).

Proof. By using Proposition 7.15, we need to show that [c, d] ⊆ f(A) whenever c, d ∈ f(A) with
c < d. In fact, let f(a) = c and f(b) = d for some a, b ∈ A. We may assume that a < b. Note that
since A is an interval, we have [a, b] ⊆ A. By applying the Intermediate Value Theorem, for any
element L ∈ [c, d], there is an element x1 between a and b such that L = f(x1) ∈ f(A), and hence
[c, d] ⊆ f(A). The proof is complete. �

Example 7.17. By Theorem 7.16, there is no continuous surjections from [0, 1] onto [0, 1]∪ [2, 3].
Hence, the set [0, 1] is not homeomorphic to [0, 1] ∪ [2, 3].

8. Uniform continuous functions

Throughout this section, let f be a function defined on a non-empty subset of R.

Definition 8.1. A function f is said to be uniformly continuous on A if for any ε > 0, there is
δ > 0 such that |f(x)− f(y)| < ε whenever x, y ∈ A with |x− y| < δ.

Remark 8.2. A function f is not uniformly continuous on A if there is ε > 0 such that for any
δ > 0, there are x, y ∈ A with |x− y| < δ but |f(x)− f(y)| ≥ ε.
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Example 8.3. (i) Let f(x) = x2 for x ∈ [0,∞). Then f is not uniformly continuous on
[0,∞). In fact for any positive integer n, we have

|f(n+
1

n
)− f(n)| = (2n+ 1/n)(1/n) = 2 +

1

n2
≥ 2.

Therefore, if we let ε = 2, then for any δ > 0, we choose a positive integer n such that
1/n < δ, so n+ 1/n and n in [0,∞) with |n+ 1/n−n| < δ but |f(n+ 1

n)−f(n)| ≥ 2. Thus,
f is not uniformly continuous on [0,∞).
Note that from this example we see that a continuous function need not be uniformly con-
tinuous on its domain.

(ii) Let f(x) = x2 for x ∈ [0, 1]. Then f is uniformly continuous on [0, 1]. In fact for x, y ∈ [0, 1]
we have

|f(x)− f(y)| = |x− y||x+ y| ≤ 2|x− y|.
Let ε > 0. Then we can choose 0 < δ < ε/2, so we have |f(x) − f(y)| ≤ 2|x − y| < ε
whenever x, y ∈ [0, 1] with |x− y| < δ. Thus, f is uniformly continuous on [0, 1].

Theorem 8.4. Let f be a continuous function on A. If A is compact, then f is uniformly contin-
uous on A.

Proof. Suppose that A is compact but f is not uniformly continuous on A. Then there is ε > 0
such that for any δ > 0, there are x, y ∈ A with |x−y| < δ but |f(x)−f(y)| ≥ ε. Consider δ = 1/n
for n = 1, 2, .... Then for any positive integer n, there are xn and yn such that |xn − yn| < 1/n but
|f(xn)− f(yn)| ≥ ε.
Then by the compactness of A, the sequence (xn) has a convergent subsequence (xnk

) such that
a := limk xnk

. By applying the compactness of A, the sequence (ynk
) has a convergent subsequence

(ynki
) with b := limi ynki

∈ A. Note that we still have a := limi xnki
. Since |xnki

− ynki
| < 1/nki

for all i = 1, 2, ..., we have a = b. Hence, we have

lim
i
f(xnki

) = f(a) = f(b) = lim
i
f(ynki

),

and so we have

0 < ε ≤ |f(xnki
)− f(ynki

)| → 0 as i→∞.
It leads to a contradiction. �

Definition 8.5. Let A be a non-empty subset of R. A function f : A → R is called a Lipschitz
function if there is a constant C > 0 such that |f(x) − f(y)| ≤ C|x − y| for all x, y ∈ A. In this
case.
Furthermore, if we can find such 0 < C < 1, then we call f a contraction.

Clearly we have the following property.

Proposition 8.6. Every Lipschitz function is uniformly continuous on its domain.

Example 8.7. (i) : The sine function f(x) = sinx is a Lipschitz function on R since we
always have | sinx− sin y| ≤ |x− y| for all x, y ∈ R.

(ii) : Define a function f on [0, 1] by f(x) = x sin(1/x) for x ∈ (0, 1] and f(0) = 0. Then f
is continuous on [0, 1] and thus f is uniformly continuous on [0, 1], but note that f is not
a Lipschitz function. In fact, for any C > 0, if we consider xn = 1

2nπ+(π/2) and yn = 1
2nπ ,

then |f(xn)− f(yn)| > C|xn − yn| if and only if

2

π
·

(2nπ + π
2 )(2nπ)

2nπ + π
2

= 4n > C.
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Therefore, for any C > 0, there are x, y ∈ [0, 1] such that |f(x) − f(y)| > C|x − y| and
hence f is not a Lipschitz function on [0, 1].

Proposition 8.8. Let A be a non-empty closed subset of R. If f : A → A is a contraction, then
there is a unique fixed point of f , i.e., there is a point a ∈ A such that f(a) = a.

Proof. First we show the existence. f is a contraction on A, so there is 0 < C < 1 such that
|f(x)− f(y)| ≤ C|x− y| for all x, y ∈ A. Fix x1 ∈ A. Since f(A) ⊆ A, we can inductively define a
sequence (xn) in A by xn+1 = f(xn) for n = 1, 2... Note that we have

|xn+1 − xn| = |f(xn)− f(xn−1)| ≤ C|xn − xn−1|
for all n = 2, 3... This gives

|xn+1 − xn| ≤ Cn−1|x2 − x1|
for n = 2, 3, .... Thus, for any n, p = 1, 2.., we see that

|xn+p − xn| ≤
n+p−1∑
i=n

|xi+1 − xi| ≤ |x2 − x1|
n+p−1∑
i=n

Ci−1.

Since 0 < C < 1, for any ε > 0, there is N such that
∑n+p−1

i=n Ci−1 < ε for all n ≥ N and p = 1, 2, ...
Therefore, (xn) is a Cauchy sequence and thus the limit a := limn xn exists. A is closed, so we have
a ∈ A and hence f is continuous at a. On the other hand, since xn+1 = f(xn), we have a = f(a)
by taking n→∞.
Finally, we show the uniqueness of the fixed point. In fact, if a and b are the fixed points of f and
a 6= b, then we have |a − b| = |f(a) − f(b)| ≤ C|a − b| < |a − b| because 0 < C < 1. It leads to a
contradiction. The proof is complete. The proof is complete. �

Remark 8.9. Proposition 8.8 does not hold if f is not a contraction. For example, if we consider
f(x) = x− 1 for x ∈ R, clearly we have |f(x)− f(y)| = |x− y| and f has no fixed point in R.

Proposition 8.10. Let f be a continuous function defined on (a, b). The the followings are equiv-
alent.

(i) There exists a continuous function F : [a, b]→ R such that F (x) = f(x) for all x ∈ (a, b).
(ii) f is uniformly continuous on (a, b).

(iii) The limits lim
x→a+

f(x) and lim
x→b−

f(x) both exist.

In this case, this continuous extension F is uniquely determined by f . In fact, F (a) = lim
x→a+

f(x)

and F (b) = lim
x→b−

f(x).

Proof. For (i)⇒ (ii), we assume that (i) holds. Then by Theorem 8.4, F is uniformly continuous
on [a, b], so f = F |(a,b) is uniformly continuous on (a, b).
For (ii)⇒ (iii), we are going to show that lim

x→b−
f(x) exists.

It suffices to show that the sequence (f(xn)) converges to the same limit whenever any sequence
(xn) in (a, b) that converges to b.
First, we claim that (f(xn)) is a Cauchy sequence for any such sequence (xn) in (a, b). Let ε > 0.
Then by the assumption (ii), there is δ > 0 such that |f(x) − f(y)| < ε as x, y ∈ (a, b) with
|x − y| < δ. Now since limxn = b and thus (xn) is a Cauchy sequence. Therefore, we can find a
positive N such that |xm − xn| < δ when m,n ≥ N . This gives |f(xm)− f(xn)| < ε as m,n ≥ N .
The claim follows and thus, the limit lim

n→∞
f(xn) exists.

Next we want to show that if (xn) and (yn) both are the sequences in (a, b) that converge to b, then
lim
n→∞

f(xn) = lim
n→∞

f(yn). Let L = lim
n→∞

f(xn) and L′ = lim
n→∞

f(yn). Let ε > 0 and let δ be given
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by the uniform continuity of f . Since limxn = lim yn, we can choose a positive integer N large
enough so that |xN − yN | < δ. In addition, such N satisfies |f(xN )− L| < ε and |f(yN )− L′| < ε
because L = lim

n→∞
f(xn) and L′ = lim

n→∞
f(yn). This implies that

|L− L′| ≤ |L− f(xN )|+ |f(xN )− f(yN )|+ |f(yN )− L′| < 3ε

for all ε > 0. Thus, L = L′ and hence, the limit lim
x→b−

f(x) exists.

The proof of the case lim
x→a+

f(x) is similar.

Finally, we show (iii) ⇒ (i). Define F (a) := lim
x→a+

f(x); F (b) := lim
x→b−

f(x) and F (x) := f(x) for

x ∈ (a, b). Note that F is continuous on [a, b]. In fact, we have F (a) = lim
x→a+

f(x) = lim
x→a+

F (x) and

F (b) = lim
x→b−

f(x) = lim
x→b−

F (x). Thus, F is continuous at x = a and b.

The last assertion follows immediately from the continuity of F . The proof is complete. �

Remark 8.11. Indeed, in the proof of Proposition 8.10 (i) ⇒ (ii) above, we have shown the
following fact. Suppose that f is uniformly continuous function defined on A. If (xn) is a Cauchy
sequence in A, then so is the sequence (f(xn)). We can use this simple observation to see a function
”NOT” being uniformly continuous on its domain.
Note the assumption of the uniform continuity of f is essential in here by considering the simple
example that f(x) = 1

x , x ∈ A := (0, 1] and xn = 1
n , n = 1, 2....

Definition 8.12. A function s : [a, b]→ R is called a step function (resp. piecewise linear) if there
exist finitely many points a = x0 < x1 < · · · < xn = b such that s is a constant on each (xk−1, xk)
(resp. linear on [xk−1, xk], i.e, s(x) = mkx+ bk ) for all k = 1, .., n.

Proposition 8.13. If f is a continuous function defined on a closed and bounded interval [a, b],
then it can be uniformly approximated by step functions (resp. piecewise linear functions), that is,
for each ε > 0, there exists a step function s (resp. piecewise linear function) defined on [a, b] such
that |f(x)− s(x)| < ε for all x ∈ [a, b].

Proof. By using Theorem 8.4, we first note that f is uniformly continuous on [a, b]. Let ε > 0.
Then there is δ > 0 so that |f(x)− f(y)| < ε whenever x, y ∈ (a, b) with |x− y| < δ. If e choose a
partition a = x0 < · · · < xn = b on [a, b] such that |xk − xk−1| < δ for k = 1, ..., n. Now if we let
s(x) := f(xk−1) when x ∈ [xk−1, xk), then s is the step function as desired.
Using the similar argument, the result is obtained for the case of piecewise linear functions. �

9. Appendix: Compact sets in R, Part 2

For convenience, we call a collection of open intervals {Jα : α ∈ Λ} an open intervals cover of a
given subset A of R, where Λ is an arbitrary non-empty index set, if each Jα is an open interval
(not necessary bounded) and

A ⊆
⋃
α∈Λ

Jα.

Theorem 9.1. Heine-Borel Theorem: Any closed and bounded interval [a, b] satisfies the fol-
lowing condition which is called the Heine-Borel Property.

(HB) Given any open intervals cover {Jα}α∈Λ of [a, b], there are finitely many Jα1 , .., JαN such
that [a, b] ⊆ Jα1 ∪ · · · ∪ JαN

Proof. Suppose that [a, b] does not satisfy Heine-Borel Property. Then there is an open intervals
cover {Jα}α∈Λ of [a, b] but it it has no finite sub-cover. Let I1 := [a1, b1] = [a, b] and m1 the
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mid-point of [a1, b1]. Then by the assumption, [a1,m1] or [m1, b1] cannot be covered by finitely
many Jα’s. We may assume that [a1,m1] cannot be covered by finitely many Jα’s. Put I2 :=
[a2, b2] = [a1,m1]. To repeat the same steps, we can obtain a sequence of closed and bounded
intervals In = [an, bn] with the following properties:

(a) I1 ⊇ I2 ⊇ I3 ⊇ · · · · · · ;
(b) limn(bn − an) = 0;
(c) each In cannot be covered by finitely many Jα’s.

Then by the Nested Intervals Theorem, there is an element ξ ∈
⋂
n In such that limn an =

limn bn = ξ. In particular, we have a = a1 ≤ ξ ≤ b1 = b. Hence, there is α0 ∈ Λ such that
ξ ∈ Jα0 . Since Jα0 is open, there is ε > 0 such that (ξ − ε, ξ + ε) ⊆ Jα0 . On the other hand,
there is N ∈ N such that aN and bN in (ξ − ε, ξ + ε) because limn an = limn bn = ξ. Thus we
have IN = [aN , bN ] ⊆ (ξ − ε, ξ + ε) ⊆ Jα0 . It contradicts to the Property (c) above. The proof is
complete.

�

Remark 9.2. The assumption of the closeness and boundedness of an interval in Heine-Borel
Theorem is essential.
For example, notice that {Jn := (1/n, 1) : n = 1, 2...} is an open interval covers of (0, 1) but you
cannot find finitely many Jn’s to cover the open interval (0, 1).

Lemma 9.3. A subset A is a closed subset of R if and only if for each element x /∈ A, there is
r > 0 such that (x− r, x+ r) ∩A = ∅.

The following is a very important feature of a compact set.

Theorem 9.4. Let A be a subset of R. Then the following statements are equivalent.

(i) For any open intervals cover {Jα}α∈Λ of A, we can find finitely many Jα1 , .., JαN such that
A ⊆ Jα1 ∪ · · · ∪ JαN .

(ii) A is compact.
(iii) A is closed and bounded.

Proof. The result will be shown by the following path

(i)⇒ (ii)⇒ (iii)⇒ (i).

For (i)⇒ (ii), assume that the condition (i) holds but A is not compact. Then there is a sequence
(xn) in A such that (xn) has no subsequent which has the limit in A. Put X = {xn : n = 1, 2, ...}.
Then X is infinite. Note that for each element a ∈ A, there is δa > 0 such that Ja := (a− δa, a+
δa) ∩ X is finite. Indeed, if there is an element a ∈ A such that (a − δ, a + δ) ∩ X is infinite
for all δ > 0, then (xn) has a convergent subsequence with the limit a. On the other hand, we
have A ⊆

⋃
a∈A Ja. Then by the compactness of A, we can find finitely many a1, ..., aN such that

A ⊆ Ja1 ∪ · · · ∪ JaN . Hence, we have X ⊆ Ja1 ∪ · · · ∪ JaN . Then by the choice of Ja’s, X must be
finite. This leads to a contradiction. Therefore, A must be compact.
The implication (ii)⇒ (iii) follows immediately from Theorem 4.8.
Finally we want to show (iii) ⇒ (i). Suppose that A is closed and bounded. Then we can find a
closed and bounded interval [a, b] such that A ⊆ [a, b]. Now let {Jα}α∈Λ be an open intervals cover
of A. Note that for each element x ∈ [a, b] \ A, there is δx > 0 such that (x − δx, x + δx) ∩ A = ∅
since A is closed by using Lemma 9.3. If we put Ix = (x− δx, x+ δx) for x ∈ [a, b]\A, then we have

[a, b] ⊆
⋃
α∈Λ

Jα ∪
⋃

x∈[a,b]\A

Ix.
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Using the Heine-Borel Theorem 9.1, we can find finitely many Jα’s and Ix’s, say Jα1 , ..., JαN and
Ix1 , ..., IxK , such that A ⊆ [a, b] ⊆ Jα1 ∪ · · · ∪ JαN ∪ Ix1 ∪ · · · ∪ IxK . Note that Ix ∩ A = ∅ for each
x ∈ [a, b] \A by the choice of Ix. Therefore, we have A ⊆ Jα1 ∪ · · · ∪ JαN and hence A is compact.
The proof is complete. �

Remark 9.5. In fact, the condition in Theorem 9.4(i) is the usual definition of a compact set
for a general topological space. More precisely, if a set A satisfies the Definition 4.1, then A is
said to be sequentially compact. Theorem 9.4 tells us that the notation of the compactness and the
sequentially compactness are the same as in the case of a subset of R. However, these two notations
are different for a general topological space.

In the rest of this section, we will make use the Heine-Borel Property to re-prove some important
results of continuous functions defined on compact sets in the sense of Heine-Borel Property (see
Theorem 9.4).

Theorem 9.6. If f is a continuous function on a compact set A, then the image f(A) is compact.

Proof. Let {Ji}i∈I be an open intervals cover of f(A). Since f is continuous on A, for each element
a ∈ A, there are δa > 0 and ia ∈ I such that f((a− δa, a+ δa)) ⊆ Jia . Note that we have

A ⊆
⋃
a∈A

(a− δa, a+ δa).

Then by the compactness of A, there are finitely many a1, ..., aN in A such that

A ⊆
N⋃
k=1

(ak − δak , ak + δak).

Therefore, we have

f(A) ⊆
N⋃
k=1

f((ak − δak , ak + δak)) ⊆
N⋃
k=1

Jiak .

�

Theorem 9.7. If f is a continuous function defined on a compact set A, then f is uniformly
continuous on A.

Proof. Let ε > 0. Let a ∈ A. Since f is continuous at a, there is δa > 0 so that |f(x) − f(a)| < ε

as x ∈ A and |x − a| < δa. Put Ja := (a − δa
2
, a +

δa
2

). Then we have A ⊆
⋃
a∈A

Ja. By using the

compactness of A, there are finitely many a1, ..., aN ∈ A such that A ⊆
N⋃
k=1

Jak . Take 0 < δ < 1
2δak

for all k = 1, ..., N . Let x, x′ ∈ A with |x − x′| < δ. Note that x ∈ Jai for some 1 ≤ i ≤ N . Then
we have |x− ai| < 1

2δai < δai and |x′ − ai| ≤ |x′ − x|+ |x− ai| < δai . Thus, we have

|f(x)− f(x′)| ≤ |f(x)− f(a)|+ |f(a)− f(x′)| < 2ε.

The proof is complete. �
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10. Monotone Functions

Using the notation given as before, f is a function defined on a subset A of R. f is called a
monotone function if it is either increasing or decreasing. The following results also hold for de-
creasing functions by considering −f instead. Recall that c is a right (resp. left) limit point of A
if for any r > 0 we have (c, c+ r) ∩A 6= ∅ (resp. (c− r, c) ∩A 6= ∅).

Proposition 10.1. Let f be an increasing function on A. Let c ∈ A. Put

L(c) := inf{f(x) : x ∈ A, x > c} if {x ∈ A, x > c} 6= ∅.
Similarly, we put

l(c) := sup{f(x) : x ∈ A, x < c} if {x ∈ A : x < c} 6= ∅.
If c is a right (resp. left) limit point of A, then L(c) = f(c+) := lim

x→c+
f(x) (resp. l(c) = f(c−) :=

lim
x→c−

f(x)).

Proof. First, we want to prove that if c is a right limit point of A, then the right limit f(c+)
exists. Since c is a right limit point of A, {f(x) : x ∈ A, x > c} 6= ∅. f is increasing, so
f(c) is a lower bound of the set {f(x) : x ∈ A, x > c}. The Axiom of Completeness implies
that L(c) := inf{f(x) : x ∈ A, x > c} exists and f(c) ≤ L(c). Thus, for any ε > 0, there
is x1 ∈ A with x1 > c such that f(x1) < L(c) + ε. Hence, if we take 0 < δ < x1 − c, then
L(c)− ε < L(c) ≤ f(x) ≤ f(x1) < L(c) + ε whenever x ∈ (c, c+ δ). Thus, L(c) = f(c+) as desired.
The proof for the case of a left limit point is similar. �

Proposition 10.2. Using the notation as in Proposition 10.1, let f be a strictly increasing (not
necessary continuous) function defined on an interval I, i.e, f(x1) < f(x2) if and only if x1 < x2

as x1, x2 ∈ I. Let d ∈ f(I). Then g(d) = L(d) (resp. g(d) = l(d)) provided L(d) (resp. l(d)) exists.
In addition, if d is a right (resp. left) limit point of f(I), then g(d) = g(d+) (resp. g(d) = g(d−)).
Consequently, the inverse function f−1 : f(I)→ I is continuous.

Proof. Let g = f−1. Note that g is also strictly increasing on f(I). Let c := g(d), hence c ∈ I
and f(c) = d. Recall that L(d) := inf{g(y) : y ∈ f(I), y > d}. g is increasing, so g(d) ≤ L(d)
whenever L(d) exists. We now suppose that g(d) < L(d), thus we can choose a point z such that
c = g(d) < z < L(d). Then by the definition of L(d), there is y1 ∈ f(I) with y1 > d. Thus, we
have z < L(d) ≤ g(y1). If we let x1 = g(y1), then x1 ∈ I and c < z < L(d) ≤ x1. I is an interval,
so z ∈ (c, x1) ⊆ I. Thus, f(z) > f(c) = d, so f(z) ∈ {y ∈ f(I) : y > d}. This implies that
z = g(f(z)) ≥ L(d). It leads to a contradiction because c < z < L(d) by the choice of z. Therefore,
g(d) = L(d).
Similarly, we also have a contradiction if l(d) < g(d). Hence l(d) = g(d).
Finally, we want to show that g is continuous at d in the following cases.
If d is an isolated point of f(I), then g is automatically continuous at d.
If d is a right limit point of f(I) but is not a left limit point of f(I), then by Proposition 10.1, we
have g(d) = L(d) = g(d+). Therefore, g is continuous at d. Similarly, if d is a left limit point of
f(I) but is not a right limit point of f(I), then we have g(d) = l(d) = g(d−), hence g is continuous
at d.
Finally, if d is a right and left limit point of f(I). Then, we have g(d) = g(d+) = g(d−) and so g
is continuous at d. The proof is complete. �
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Proposition 10.3. Let f be an increasing function defined on A and let D be the set of discontin-
uous points of f . Then D is a countable set.

Proof. For each integer n, we put Dn := {x ∈ D : n − 1 ≤ f(x) ≤ n}. Then D =
⋃
n∈ZDn.

Therefore, it suffices to show that each Dn is countable.
We now fix Dm. By using Proposition 10.1, we first note that c ∈ Dm if and only if f(c)−f(c−) > 0
or f(c+)− f(c) > 0. Put J(c−) := [f(c−), f(c)] and J(c+) := [f(c), f(c+)]. Then J(c+) or J(c−)
is an interval. Therefore, if we put α(c) is the length of (J(c−)∪J(c+)) for c ∈ Dm, then α(c) > 0.
On the other hand, if c1, c2 ∈ Dm with c1 < c2, then J(c1+)∩J(c2−) has at most one point if they
exist. Thus, we have

0 <
∑
c∈Dm

α(c) ≤ m− (m− 1) = 1.

Since α(c) > 0 for all c ∈ Dm, the set Dm need to be countable. In fact, note that we have

Dm =
⋃
k∈Z+

{c ∈ Dm : α(c) ≥ 1/k}.

Thus, if Dm is uncountable, then there exists a positive integer k so that R := {c ∈ Dm : α(c) ≥
1/k} is infinite. Therefore,

∑
c∈R α(c) is infinite. It leads to a contradiction. �
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